

Note

A convenient method for the oxidation of Hantzsch 1,4-dihydropyridines with N-bromo succinimide

R Nagarajan, J C A Anthonyraj

D Muralidharan, C Saikumar & P T Perumal*

Organic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India

E-mail: Ptperumal2002@yahoo.com

Received 31 March 2005; accepted (revised) 25 August 2005

A convenient and mild method for the conversion of Hantzsch 1,4-dihydropyridines to pyridines using N-bromo succinimide at room temperature in excellent yields has been described.

Keywords: Hantzsch 1,4-dihydropyridines, pyridines, N-bromo succinimide

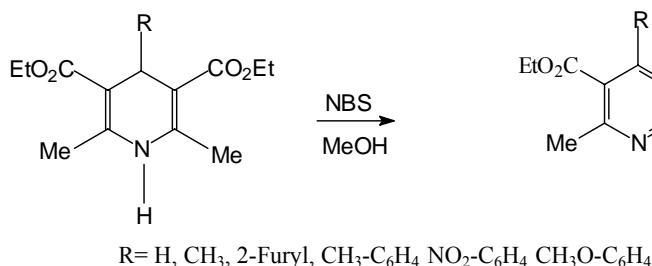
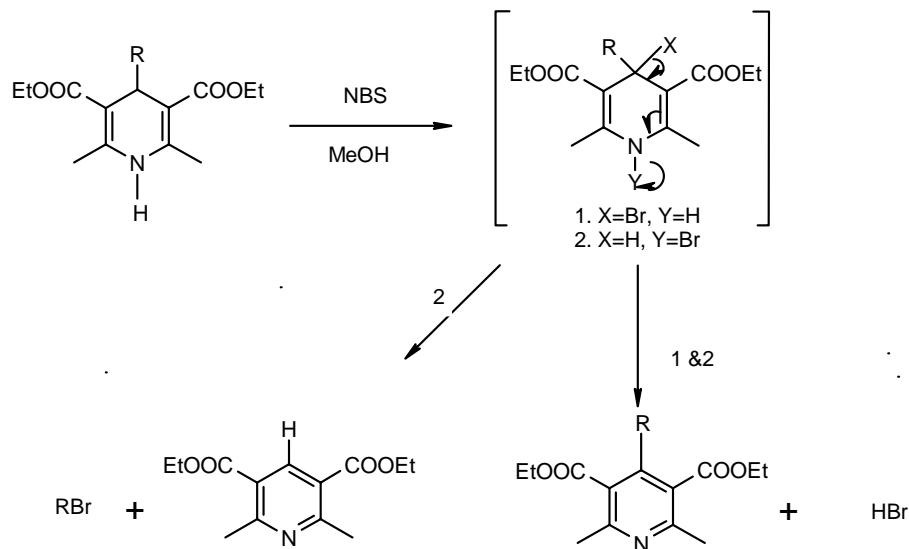
IPC: Int.Cl.⁷ C 07 D 211/00

Dihydropyridines are of utmost importance in biological systems as a class of useful drugs particularly as anti-oxidants. 4-Substituted-1,4-dihydro-2,6-dimethyl 3,5-pyridine dicarboxylic acid esters have anti-hypototic and anti-ischemic activities. Some of the representative compounds of this class possess acaricidal, insecticidal, bactericidal and herbicidal activities¹. Hantzsch 1,4-dihydropyridine derivatives are often regarded as the models of the natural reduced nicotinamine adenine dinucleotide (NADH) coenzyme which function as redox reagent for biological reactions by transferring an electron or a hydride ion to the surrounding substrate² and hence their oxidation behaviour under various conditions assumes greater significance.

Oxidation of Hantzsch 1,4-dihydropyridines is one of the ubiquitous issues in organic chemistry. In recent years several groups have reported various new oxidation methods which include oxidation with ferric nitrate on a solid support³, ceric ammonium nitrate⁴, clay-supported cupric nitrate (claycop)⁵ under sonication conditions, pyridinium chlorochromate⁶, bromo trichloro methane⁷, nitric acid⁸, nitric oxide and *N*-methyl-*N*-nitrosotoluene-*p*-sulphonamide^{9,10}. Earlier we have reported a milder method for

oxidation of Hantzsch 1,4-dihydropyridines to the corresponding pyridine derivatives using urea nitrate and peroxydisulfate-cobalt (II) under microwave and refluxing conditions¹¹. Recently Zhang *et al.* have reported the production of hydrogen in quantitative yield during the photocatalytic oxidation of Hantzsch dihydropyridine and its 4-alkyl and 4-aryl substituted derivatives using platinum catalysts¹².

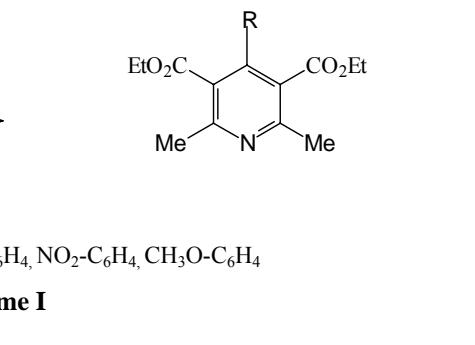
However, most of the earlier reported methods require drastic reaction conditions, an extended period of time for the completion of oxidation and afford only modest yields of products. Even though various oxidants have been employed, application of N-bromosuccinimide has not been explored for the oxidation of dihydropyridines. N-Bromosuccinimide is a versatile reagent for the oxidation of primary and secondary alcohols^{13,14}, α -hydroxy carboxylic acids^{15,16}, α -hydroxy carboxylic esters¹⁷, α -amino carboxylic acids¹⁴, mercaptans and thio-phenols¹⁸, ketoximes¹⁹, hydrazines and hydrazones¹⁶. In addition, NBS is a preferred reagent for allylic bromination. While hydroxy acids like malic acid, tartaric acid, citric acid etc. are converted to aldehydes and ketones, polyhydric alcohols (glycol, glycerol and hexitols) are quantitatively decomposed to carbon dioxide and water¹⁸ with NBS. NBS also promotes reactions of sterically hindered cresols via *p*-benzoquinone methide²⁰. Herein we describe a new, faster method for the oxidation of Hantzsch 1,4-dihydropyridines to the corresponding aromatic pyridine derivatives using commercially available N-bromosuccinimide in methanol at ambient temperature within five minutes. The reagent is mild and offers a convenient method for the aromatization in excellent yield in comparison to the earlier reported procedures. (**Scheme I, Table I**)



Oxidation of 4-substituted 1,4-dihydropyridines to the corresponding pyridines using NBS in methanol gives excellent yield. With phenyl and styryl groups as substituents at the *para* position of the 1,4-dihydropyridines, oxidation with NBS resulted in the formation of both alkylated and dealkylated products. However with other substituents only the alkylated pyridines were obtained.

Based on the results obtained it is proposed that the oxidation reaction could probably proceed through any

Table I—Oxidation of 1,4 dihydropyridines with N-bromosuccinimide

Substrate R=	Yield (%)	Dealkylated product (%)
H-	97	-
CH ₃ -	95	-
2-furyl-	78	-
C ₆ H ₅ -	70	16
4-CH ₃ -C ₆ H ₄ -	90	-
3-O ₂ N-C ₆ H ₄ -	87	-
4-CH ₃ O-C ₆ H ₄ -	94	-
Ph-CH=CH-	85	7


m.p, IR, Mass and NMR data are given in reference 11.

Scheme I**Scheme II**

of the two types of mechanisms as suggested in **Scheme II**. In the first step the bromine radical produced by the NBS replaces the H atom in the fourth position of Hantzsch pyridine (as hydrogen radical and an intermediate is obtained) followed by elimination of hydrogen bromide from the above allylic bromide which occurs more readily because of aromatization. In the second mechanism the bromine radical produced

by the NBS replaces the hydrogen atom attached to the nitrogen atom of the Hantzsch pyridine. In the second step, elimination of either hydrogen bromide or allyl bromide takes place due to aromatization. The first mechanism does not explain the formation of dealkylated product but the second mechanism explains both de-alkylated and alkylated products. This methodology is specific for oxidation of dihydropyridines but resulted in a mixture of products when applied to analogous dihydropyrimidines.

In conclusion, we claim that oxidation of Hantzsch 1,4-dihydropyridines to corresponding pyridines with N-bromosuccinimide reported by us offers a simple

method using readily available reagent with excellent yield in short reaction time at room temperature.

Experimental Section

General procedure for the aromatization of 4-substituted Hantzsch 1,4-dihydropyridines: To a solution (or slurry) of 2,6-dimethyl-3,5-dicarbethoxy-4(methyl)-1,4-dihydro pyridine (0.5 g, 1.87 mmoles)

in 10 mL of methanol, N-bromosuccinimide (0.33 g, 1.87 mmoles) was added and the reaction mixture was stirred at room temperature. The colour of the solution changes immediately and the reaction proceeds instantaneously within five min. After completion of the reaction, as monitored by TLC, water (50 mL) was added and the mixture was extracted with chloroform (3×20 mL). The organic layer was separated and dried over anhydrous sodium sulphate, filtered and evaporated under reduced pressure. The residue obtained was column chromatographed over silica gel (60-120 mesh) and eluted with 20% ethylacetate and pet.ether mixture. Spectral data of diethyl 2,6-dimethyl-4-methylpyridine-3,5-dicarboxylate is given below: yield 95%, IR (Neat): 2981, 2937, 1725, 1567, 1239, 1107, 1041, 857 cm^{-1} ; ^1H NMR (300 MHz, CDCl_3): δ 1.40 (t, 6H, $J = 7.1$ Hz), 2.28 (s, 3H), 2.53 (s, 6H), 4.42 (q, 4H, $J = 7.2$ Hz); ^{13}C NMR (75 MHz, CDCl_3): δ 14.2, 17.0, 22.8, 61.6, 127.7, 142.3, 154.9, 168.3; MS m/z : 265(M^+); Found: C, 63.55; H, 7.30; N, 5.21. $\text{C}_{14}\text{H}_{19}\text{NO}_4$ requires C, 63.38; H, 7.22; N, 5.28%. The analytical data for other products has been reported earlier¹¹.

Acknowledgement

The authors thank Council of Scientific and Industrial Research, New Delhi, India for the financial support.

References

- 1 Khadikar B & Borkat S, *Synth Commun*, 28, **1998**, 207 and references cited therein.
- 2 Brewster M E, Simay A, Czako K, Winwood D, Farag H & Bodor N, *J Org Chem*, 54, **1989**, 3721.
- 3 Balogh M, Hermecz I, Meszaros Z & LasZlo P, *Helv Chem Acta*, 67, **1984**, 2270.
- 4 Pfister J R, *Synthesis*, **1990**, 689.
- 5 Maquestiau A, Mayence A & Eynde J J V, *Tetrahedron Lett*, 32, **1991**, 3839.
- 6 Eynde J J V, Mayence A & Maquestiau A, *Tetrahedron Lett*, 33, **1992**, 463.
- 7 Kurtz J L, Hutton R & Westheimer F H, *J Am Chem Soc*, 33, **1961**, 584.
- 8 Boucher R H & Guengerich F D, *J Med Chem*, 29, **1986**, 1596.
- 9 Itoh T, Nagata K, Okada M & Ohosawa A, *Tetrahedron Lett*, 36, **1995**, 2269.
- 10 Zhu X Q, Zhao B J & Chang J P, *J Org Chem*, 65, **2000**, 8158.
- 11 Anniyappan M, Muralidharan D & Perumal P T, *Tetrahedron*, 58, **2002**, 5069.
- 12 Zhang D, Wu L, Zhou L, Han X, Yang Q, Zhang L & Tung C, *J Am Chem Soc*, 126, **2004**, 3440.
- 13 Hebbelynck M F & Martin R H, *Bull Soc Chem Belges*, 60, **1951**, 54.
- 14 Schonberg A, Moubasher R & Barakat M Z, *J Chem Soc*, **1951**, 2504.
- 15 Barakat M Z & Wahap M F A, *J Am Chem Soc*, 75, **1953**, 5731.
- 16 Barakat M Z, Wahap M F A & Sadr, M M, *J Am Chem Soc*, 77, **1955**, 1670.
- 17 Kruse P F, Geurkink J N & Grist K L, *J Am Chem Soc*, 76, **1954**, 5796.
- 18 Wahap M F A & Barakat M Z, *Monatsh Chem* 88, **1957**, 692.
- 19 Iffland D C & Criner G X, *J Am Chem Soc*, 75, **1953**, 4047.
- 20 Duar S, Turk J, Speigle J, Cobin J, Masnovi J & Baker J R, *J Org Chem*, 65, **2000**, 108.